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Abstract— This paper describes a probabilistic framework
for appearance based navigation and mapping using spatial and
visual appearance data. Like much recent work on appearance
based navigation we adopt a bag-of-words approach in which
positive or negative observations of visual words in a scene are
used to discriminate between already visited and new places.
In this paper we add an important extra dimension to the
approach. We explicitly model the spatial distribution of visual
words as a random graph in which nodes are visual words
and edges are distributions over distances. Care is taken to
ensure that the spatial model is able to capture the multi-modal
distributions of inter-word spacing and account for sensor
errors both in word detection and distances. Crucially, these
inter-word distances are viewpoint invariant and collectively
constitute strong place signatures and hence the impact of using
both spatial and visual appearance is marked. We provide
results illustrating a tremendous increase in precision-recall
area compared to a state-of-the-art visual appearance only
systems.

I. INTRODUCTION

This paper concerns non-metric navigation and mapping
in appearance space - a by-product of which is loop closure
detection. Simply put, we want to have a robot create
a topological representation of its trajectory represented
by a graph in which each node is a distinct place and
edges represent transitions between places. There has been
a substantial corpus of work on this topic in recent years
(Section II provides an overview) most of which has used
a single sensing modality - usually vision. In this work, we
provide and test a formulation which uses not only the visual
appearance of scenes but also aspects of its geometry. Our
approach, called FAB-MAP 3D, has its roots in the FAB-
MAP algorithm [7], [8], [9] which has recently been shown
to operate in realtime over trajectories of 1000km with high
precision [10]. The essence of FAB-MAP is that it learns
a probabilistic model of scene appearance online using a
generative model of visual word observations and a sensor
model which explains missed observations of visual words.
We take the same approach in this work but have the added
complication that the observation of spatial ranges between
words is coupled to the observation of pairs of visual words.
We capture this interaction via a random graph which models
a distribution over word occurrences as well as their pairwise
distances. We describe how through non-parametric Kernel
Density Estimation we can learn interesting and suitable
distributions over inter-word distances and also accelerate in-
ference by executing a Delaunay tessellation of the observed
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graph. We shall demonstrate our system and show improved
performance over vision only sensing in an outdoor setting.

Our motivation for incorporating range information is two
fold. Firstly, prior to this the work, the FAB-MAP framework
only modeled the presence or absence of a word at a location
and did not incorporate the spatial arrangement of visual
words. Hence, the system assigned equal probability to two
places if exactly the same visual words were seen in two
places, even if the spatial arrangement was different (Figure
2). Secondly, FAB-MAP currently discards the number of
times a word appears in a scene - there is information being
neglected here. This is addressed in FAB-MAP 3D because
by using the range between occurrences of visual words we
are implicitly counting word occurrence. Note also that we
are in the business of robotics where range information is
ubiquitous be it from lidar, stereo or structure from motion -
we should use it if we can. Finally, there is also an important
prima facia advantage of using distances because they are
invariant under rigid transformation and that is precisely what
we require of a place descriptor in topological navigation. We
must stress though that throughout this work we only need
intra-scene distances which can be derived in a local frame,
nowhere do we require a single metric picture of the world.

II. RELATED WORK

Use of shape and spatial information for object recognition
and categorization has been explored in computer vision.
Burl et al. [4] introduced the constellation model describing
objects as a set of characteristic parts arranged in variable
spatial configurations. This was later utilised for category-
level object recognition by [13]. Ranganathan et al. [21]
extended the model for recognizing indoor workspaces for
mobile robots. They present a 3D generative model for
indoor places using objects modeled by their shape and
appearance with feature positions obtained using depth from
a stereo camera. The idea of attribute and random graphs was
introduced by [27] who applied them to structural pattern
recognition. [23] generalized this framework to function-
described graphs and applied them to object recognition
from 2D views for indoor robotic applications.

There is related research in appearance-based mapping
and loop-closure detection. Konolige et al. [16] present
a topological mapping scheme, view based maps, using
geometric feature matching in stereo views and maintaining
a vocabulary tree [20] to check loop-closure candidates. Mil-
ford and Wyeth [19] describe a large scale appearance-based
navigation experiment using biologically inspired techniques.
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Tapus et al. [26] model places through fingerprints (multi-
modal feature based representation like colour bins from
cameras and corners from laser scanner) and use POMDP
(Partially Observable Markov Decision Process) for mapping
and global localization. In [1], Angeli et al. present an
incremental loop-closure detection scheme using a bag-of-
words approach coupled with epipolar geometric checks.

III. RANDOM GRAPH LOCATION MODEL

The world is modeled as a set of independent and disjoint
locations. A mobile robot collects image and range obser-
vations of the environment and computes the probability
that the observation comes from a known location in the
topological map or from a new place. We adopt a bag-of-
words representation for visual data [24], where images are
represented as a set of words or attributes from a vocabulary
of size, |v|. Additionally, we assume that the vehicle is
equipped with a range measuring sensor, e.g., a laser range
finder or a stereo camera that gives 3D positions of visual
features detected in the scene relative to the vehicle1.

Each location is modeled as a random graph, Lk =
{Ek, Hk}, such that, Ek, represents a random vertex set,
{ei|1 ≤ i ≤ |v|}, where binary variable ei is the
event that the ith word exists at the location2. The vi-
sual appearance of a place is characterized by the set{
p(e1 = 1|Li), . . . , p(e|v| = 1|Li)

}
, an estimate of the prob-

ability that each word exists at the location.
Hk, is the random arc set, {hij |1 ≤ i, j ≤ |v|}, where

hij is the discrete probability distribution (histogram) over
euclidean distances in 3D space between the ith and the jth

word. These distributions capture the spatial appearance of a
location by maintaining the belief over distances between all
pairwise words, including words of the same type (details in
Section IV).

An observation of a local scene is represented by a graph,
Gk = {Zk, Dk}, where Zk is the vector

{
z1, . . . , z|v|

}
, in

which each zi is a binary variable indicating the presence
(or absence) of the ith word of the vocabulary in the scene.
Dk, is the set of spatial distances observed between word

pairs, including distances perceived between words of the
same type. Let cij , be the count of all pairwise distances
observed between the ith and the jth word. Note that cij
exceeds one when either ith and/or the jth word occurs
multiple times and cij is zero, when either word is not
observed. Formally, the set of observed spatial distances, Dk

can be represented as {dn
ij |1 ≤ i, j ≤ |v|, 1 ≤ n ≤ cij}.

Figure 1 provides a representation of the generative model
for locations. A location, L independently generates objects
features, ei which produce observations, zi detected by the
visual sensor. A detector model, Detvisual for the appearance
sensor connects hidden variables for feature existence to the

1Please note that we do not require large scale 3D reconstruction but
simply a way to calculate the range between visual words.

2We ask for the reader’s forbearance for the counter-intuitive naming of
the vertex set as E. This notation is used for consistency with previous
FAB-MAP papers.
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(a) Visual component of the generative model.
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(b) Spatial component of the generative model.

Fig. 1: Generative Model: Locations independently generate
object features, ei which produce observations, zi detected
by the visual sensor (top). First-order correlations exist for
word observations. Additionally, locations possess distri-
butions over word pair distances, hij which give rise to
observed distances conditioned on the observations zi and
zj of each word pair (bottom). The model includes distance
observations from multiple occurrences of a word.

observed variables of feature detection.

Detvisual

{
p(zi = 1|ei = 0), false positive rate.
p(zi = 0|ei = 1), false negative rate.

(1)
In addition, each location possesses distributions over

word pairs, hij which give rise to measured distances, dij .
The uncertainty in the range measuring process is modeled
as a gaussian conditional density, Detrange, centered on the
discrete ranges of hij and parameterized by variance, σrange.

Detrange = p(dij |hij = x) ∼ N(x, σrange) (2)

IV. LEARNING DISTRIBUTIONS OVER WORD DISTANCES

The spatial appearance of a place is characterized by
probability distributions over word distances (Figure 3).
Visual words observed by an outdoor mobile robot can
appear at highly varied distances, e.g., features detected on
foliage are commonly seen at short distances and features
on repeated structures like brick walls or railings can dis-
play large variations (multi-modal behaviour). To represent
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Fig. 2: An illustrative example showing the significance of
spatial information. The two scenes have the same visual
words {Red, Green, Blue, Tan} but different configurations
(pairwise distances). The FAB-MAP framework considers
both places to be the same. However, FAB-MAP 3D captures
the spatial information through the random graph model and
infers the places to be different. Note that sphere sizes differ
due to perspective view.

Fig. 3: A toy example illustrating the spatial model with
a planar scene (top) with three words {square, triangle and
disc}. The distributions over pairwise distances are illustrated
below. Note that the figure is not to scale.

these complex multi-modal distributions, we adopt a non-
parametric histogram representation. Formally, let Lmax be
the maximum distance between any two words in the scene.
This is typically the maximum range of a distance measuring
sensor. The continuous range is sub-divided into bins, bk,
each of length, ∆ and let R be the total number of bins in
each histogram (R = Lmax

∆ ) . Let p(hij = bk) represent the
cumulative density in bin, bk, where 1 ≤ k ≤ R.

p(hij = bk) = p((k − 1)∆ ≤ hij ≤ k∆) (3)

Given observed inter-word distances from training data,
the probability mass in each bin is estimated through Kernel
Density Estimation (KDE) [14]. In this approach, density
at a point x is estimated through a linear combination of
kernel functions centered on training data {xi}i=1...N , where

samples {xi} are assumed i.i.d. according to an underly-
ing distribution. The kernel K(u) satisfies the conditions
K(u) ≥ 0 and

´
K(u)du = 1. The most widely used kernel

is the gaussian of zero mean and unit variance for which the
KDE can be written as:

p̂(x) =
1
Nh

N∑
i=1

K(
x− xi

h
)

=
1

N
√

2πh

N∑
i=1

exp−(
(x− xi)2

2h2
) (4)

The kernel function is characterized by a bandwidth (h)
that determines the accuracy of the model. Kernels too
narrow lead to overfitting and very wide bandwidths lead
to underfitting [14]. A number of techniques have been
proposed for data-driven bandwidth selection. These methods
minimise the asymptotic integrated mean integrated square
error (AMISE) between the estimate, p̂(x) and the actual
density, p(x). The most successful methods rely on estima-
tion of density derivative functionals through the solve-the-
equation plug-in method [22]. We used an implementation
of an efficient ε−exact approximation algorithm for optimal
bandwidth estimation based on the improved fast gaussian
transform (IFGT) [28] with computational complexity linear
in the number of training points. Once the optimal bandwidth
is estimated, Equation 4 is used for calculating probabilities
for each histogram bin.3

Sometimes due to limited training data, there are very few
range samples for rare word pairs. Such sampling error can
cause probability estimates in some histogram bins can take
degenerate values of 0 or 1. To mitigate this effect, maximum
likelihood probability estimates must be smoothed and then
renormalized. A variety of smoothing techniques exist [11],
typically of the form in Equation 5. We assume uniform
prior, i.e., pprior = 1

Lmax
and set K =

√
N , where N is the

number of training samples. In case no training samples are
seen, each bin is assigned a flat prior.

psmooth = (
N

N +K
)pmle + (

K

N +K
)pprior (5)

V. PROBABILISTIC NAVIGATION AND MAPPING

A. Estimating Location

At time k, the workspace is modeled as a collection of
nk discrete and disjoint locations Lk = {L1, . . . , Lnk

}.
Given a random graph model for each location, we compute
the probability that the observed graph was generated by
each location, Ln. Calculating p(Ln|Gk) can be posed as a
recursive Bayes estimation problem:

p(Ln|Gk) =
p(Gk|Ln,Gk−1)p(Ln|Gk−1)

p(Gk|Gk−1)
(6)

where p(Ln|Gk−1) is the prior estimate of the robot’s loca-
tion, p(Gk|Ln,Gk−1) represents the observation likelihood,

3There is scope for further work here. Since distances are non-negative,
kernels with positive support like gamma kernels can be used for density
estimation, where mixture parameters can be learnt through expectation
maximization [5].
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and p(Gk|Gk−1) is the normalization constant. Observations
are assumed to be conditionally independent given location.
Thus, p(Gk|Li,Gk−1) is approximated as p(Gk|Li). The
likelihood that the observed graph was generated by location
Ln is factored as two terms: (i) p(Zk,|Ln), likelihood of
the visual appearance given location and (ii) p(Dk|Zk,Ln),
likelihood of the observed spatial distances conditioned on
visual observations and location.

p(Gk|Ln,Gk−1) ≈ p(Gk|Ln)
= p({Zk,Dk}|Ln)
= p(Dk|Zk,Ln)p(Zk,|Ln) (7)

The visual appearance likelihood term is expanded using
the Chow-Liu approximation [6], Equation 8. This expansion
approximates the discrete joint distribution p(z1, z2, . . . , z|v|)
by the closest tree-structured Bayesian network according to
the Kullback-Leiber (KL) divergence criteria. Here, zr is the
root of the tree and zpq is the parent of zq in the Chow-Liu
tree. These factors can further be expressed in terms of prior
probabilities, the range detector model and conditionals from
training data (details in [7], [9]).

p(Zk|Ln) ≈ p(zr|Ln)
|v|∏

q=2

p(zq|zpq , Ln) (8)

Conditioned on the visual observation and location, the
spatial likelihood term is estimated as follows:

p(Dk|Zk,Ln) =
|v|∏

i,j=1

Cij∏
n=1

p(dn
ij |zi, zj , Ln) (9)

Pairwise distance edges in the graph are considered in-
dependent of other edges given observations of their end
points. The likelihood of observing a pairwise distance
p(dn

ij |zi, zj , Ln) is factored in terms of the prior belief
over the distance p(hij = br|Ln) from histogram, hij

and the probability of observing the distance given belief,
p(dn

ij |hij = br) via the range detector model. The likelihood
is obtained by marginalizing over the discrete range esti-
mates, bk of the histogram, hij . The range detector model is
assumed independent of location.

p(Dk|Zk,Ln) = (10)
|v|∏

i,j=1

|Cij |∏
n=1

R∑
r=1

p(dn
ij |hij = br)︸ ︷︷ ︸
Detrange

p(hij = br|Ln)︸ ︷︷ ︸
histogram

B. Evaluating the Normalization Term

The normalization term p(Gk|Gk−1) is the total likelihood
of the observation Gk. An observation can come from the
set of locations currently in the robot’s map (M ) as well
as the set of all previously unknown locations (M ). Hence,
p(Gk|Gk−1) can be expressed as a sum:

p(Gk|Gk−1) =
∑

m∈M

p(Gk|Lm)p(Lm|Gk−1)

+
∑
u∈M

p(Gk|Lu)p(Lu|Gk−1) (11)

The second term involves summation over all unmapped
places and cannot be directly computed. The summation is
approximated through mean field approximation4 [15] by
constructing an average place model, Lavg = (Eavg,Havg).

p(Gk|Gk−1) ≈
∑

m∈M

p(Gk|Lm)p(Lm|Gk−1)

+ p(Gk|Lavg)
∑
u∈M

p(Lu|Gk−1) (12)

The visual appearance component of the average place,
Eavg is constructed by assigning ei variables their marginal
probabilities from training data. In similar vein, the spatial
appearance of the average place, Havg is the set of marginal
histograms for each word pair, where each histogram is a
density estimate learnt from all pairwise distance samples
observed in training data.

This formulation also addresses the perceptual aliasing
problem: the fact that different parts of the environment
appear the same to robot’s sensors. e.g., similar looking
foliage and brick walls appear commonly while navigating
outdoors. The visual appearance model for the average place
learns which features are common in the environment, like
words appearing on foliage have high marginal probabilities.
Additionally, the spatial appearance model for the average
place learns what distances words commonly appear at.
Hence, it can learn that features detected on brick walls
commonly appear at repeated distances. Overall, the system
matches an observation to a location only when both the
visual and spatial appearance is distinctive.

C. Updating Location Model

A new location in the topological map is initialized with
the average place model where (i) word generators exist with
marginal probability, p(ei = 1|Lnew) = p(ei = 1) and (ii)
word pair histograms are initialized to marginal histograms,
p(hij = br|Lnew) = p(hij = br). When an observed graph
relates to a location in the map, the random graph model for
the location is updated according to the current belief and
the sensor models. For the visual component, the probability
of feature existence, p(ei = 1|Ln) is updated as:

p(ei = 1|Ln,Gk) =
p(zi|ei = 1)p(ei = 1|Ln,Gk−1)

p(zi|Ln)
(13)

Additionally, the observed word-pair distances are used
to update their corresponding density historgrams. Hence,
probability associated with each bin, p(hij = br|Ln) is
updated as follows:

p(hij = br|Ln,Gk) =
p(dn

ij |br)p(hij = br|Ln,Gk−1)
p(dn

ij |Ln)
(14)

4As described in [9], a superior alternative to the mean-field approxi-
mation is the sampling based approximation. The current implementation
uses the mean-field approach due to lack of a large representative dataset
with both vision and range data required for constructing the sampling set.
Collecting a larger dataset is planned as part of future work.
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This step assumes that observations of a word or an
observed distance between a word-pair does not convey
information about either existence or pairwise distances of
other words. The data association decision for observations
and locations is based on maximum likelihood criterion.
Loop closures are accepted only when the loop closure prob-
ability exceeds a user defined threshold, paccept = 0.999.

VI. ACCELERATING GRAPH LIKELIHOOD COMPUTATION

In a given scene, let Nf be the total number of visual
words detected. While computing the spatial likelihood term
p(Dk|Zk,Ln), we compute individual distance likelihoods
for Nf (Nf−1)

2 ≈ O(N2
f ) pairwise distances. Essentially, all

distance edges of the observed 3D graph are considered and
O(N2

f ) histograms are updated according to Equation 13.
However, features detected in a workspace originate from
objects that generally possess high local spatial correlation,
like features detected on a window. Similarly, features sep-
arated by large distances are spatially less correlated. Using
this intuition, we would like to consider distances only to
neighbouring points, where by neighbouring we imply a
pair of points whose cells in the Voronoi tessellation share
an edge. Formally, we compute the Delaunay tessellation
of the 3D graph that results in a division of the graph
into tetrahedrons (simplices) such that no data point is
contained in any circumsphere of the simplices5 [12]. The
condition on circumspheres prevents the tessellation to return
skewed tetrahedrons, in effect connecting points to local
neighbours. We restrict the graph likelihood computation
only to edges of the tessellated graph which scales O(Nf )
compared to O(N2

f ) for the complete graph. We use an
implementation based on Qhull6, a standard computational
geometry package, to compute the tessellation [2]. The 3D
Delaunay tessellation algorithm has O(Nf logNf ) complex-
ity [2]. Under certain cases, a valid tessellation does not exist
due to numerical issues or coincident points. In such cases
we can use nearest-neighbour criterion to pick relevant edges.
An experimental evaluation of several implementations of 3D
Delaunay tessellations appears in [18].

VII. EVALUATION

A. Platform and dataset
The topological mapping algorithm was tested on image

and laser data from a mobile robot shown in Figure 4.
Imagery was captured at 3Hz from a Point Grey Ladybug
2 camera and laser data was obtained from a SICK LMS291
laser, scanning 90◦ at 75Hz with 0.5◦ resolution. The laser
is mounted so as to scan in a vertical plane normal to
the vehicle’s forward motion. The camera and the laser are
experimentally cross-calibrated. The dataset was gathered
within New College, Oxford in an environment of medieval
buildings enclosing an oval lawn and cambered tarmac
space [25]. The site possesses repetitive architectural features
causing perceptual aliasing and is also traversed by people,
thereby testing the system’s robustness to scene change.

5Delaunay tessellation is the dual of Voronoi tessellation.
6Available at http://www.qhull.org/

Fig. 4: Robotic platform used for experimentation with
sensors and coordinate frame centres shown.

B. Processing pipeline

Every image is converted to a bag-of-words representation
by first extracting SURF features [3] and then quantizing
them against a fixed vocabulary to obtain visual words
for the image, yielding Zk. The vocabulary is generated
by clustering SURF features obtained from training images
where cluster centres correspond to vocabulary visual words.
A vocabulary size of 10K words is employed. The SURF
descriptor also determines the scale at which the feature was
detected, hence approximating feature size in image space.

The next task is to determine inter-word distances for the
scene. Laser scans obtained in a 16sec window around image
capture time are back projected into the view of the camera.
For each visual word detected in the image, close laser points
are determined that lie within a radius equal to feature size
(from the SURF descriptor). The visual word is assigned a
3D coordinate by taking an inverse-radially weighted-average
of the 3D coordinates of all nearby laser points within the
search radius. Hence, we now know where visual words lie
in 3D space and can determine pairwise distances forming
the set Dk. The resulting observation graph, Gk = {Zk, Dk}
is then passed on to the inference engine.

The next step is building the vocabulary model by con-
structing the Chow-Liu tree by a procedure outlined in [9].
It consists of constructing the mutual information graph
using word co-occurrence data from the training set and
then computing the maximum weight spanning tree. The
marginal pairwise distance histograms were determined from
a training set of 400 images. Although the set of all pairwise
distance histograms is very large (10K × 10K), only a
relatively smaller number, 557491 word pairs were observed
to co-occur. For the other pairs a uniform prior over ranges
was assumed. Since the word co-occurrence matrix is very
sparse, the number of histograms required for inference is
tractable. For space efficiency, only a single global copy
of the marginal word-pair histograms is maintained. While
initializing a new place model, only the modified distance
histograms are maintained locally.
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Fig. 5: Precision-recall curves comparing FAB-MAP, FAB-
MAP 3D with complete graph evaluation and FAB-MAP 3D
with accelerated graph inference on the New College data
set. Note the scale. FAB-MAP 3D has a higher recall of
74% at 100% than FAB-MAP that has 42% recall at 100%
precision. The graph for the accelerated approach partially
overlaps with FAB-MAP 3D with complete evaluation. The
accelerated approach has marginally lower recall of 71% but
still performs better than FAB-MAP.

The final ingredient is the detector model. For the visual
detector, p(zi = 1|ei = 0) = 0 and p(zi = 0|ei = 1) =
0.39. The variance for the range detector, σrange was set to
1.5m. Although, as noted by [17], the range uncertainty for
LMS laser scanners (for close range) is ≈ 3cm, the range
detector model also incorporates (i) uncertainty arising from
vehicle odometry errors that affect projection of laser scans
into image space taken a few seconds before or after image
time and (ii) slight errors in cross-calibrating the laser ranger
and the camera.

C. Results

The test set consisted of 117 images. Precision-recall
curves are shown in Figure 5. The curves are obtained by
varying the probability threshold at which loop closures
are accepted. Ground truth was obtained from GPS data
and determined by hand in sections where reception was
intermittent. For comparing only the core inference aspect of
the system, the prior probability of being at a location was
kept uniform (no motion model) for both implementations.

FAB-MAP 3D with complete graph evaluation achieved
100% precision at 74% recall whereas the original FAB-
MAP algorithm had a lower recall of 42% at 100% precision.
In our setting, recall refers to the fraction of total loop
closures that exceed the probability threshold and hence
declared by the system [9]. FAB-MAP 3D with accelerated
graph inference based on Delaunay tessellation achieved
100% precision at 71% recall. Hence, the graph approx-
imation has a marginally lower recall than the full graph
computation but still significantly outperforms FAB-MAP.

(a)

(b)

Fig. 6: Examples of true loop closures detected by FAB-MAP
3D using spatial similarity and not detected by FAB-MAP.

(a)

(b)

Fig. 7: An example of a true loop closure detected by
FAB-MAP 3D with high confidence whereas FAB-MAP
assigned close to zero loop closure probability. The observed
3D graphs for both scenes appear on the right. Spheres
represent visual words and colours indicate word type. The
broad similarity in the graphs enables FAB-MAP 3D to infer
loop closure. Image features shown in gray did not have
associated range information due to limited coverage of the
laser scanner, hence not included in the graph computation.
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Fig. 8: (a) Number of scenes vs. number of features detected,
Nf for the combined set of training and test sets (517
locations). Average Nf = 116 (std. dev. 48, median 112). (b)
Number of word-pair distance probability histogram updates
vs. Nf . The histogram updates required, scales quadratically
in Nf for the complete graph evaluation and linearly for com-
putation with Delaunay tessellation, illustrating the speed-up
of the appoximate scheme.

Figure 6 illustrates examples of true loop closures declared
by FAB-MAP 3D but not detected by FAB-MAP. The
perceived 3D graphs for one such loop closure pair appear
in Figure 7. The spheres represent visual words and colours
indicate word type. The graphs are similar but possess
minor differences caused by scene change (dynamic objects)
as well as sensor uncertainty. The FAB-MAP framework
only considers words presence and does not find the two
places to be distinctively similar. However, the probabilistic
random graph framework in FAB-MAP 3D models both
word presence and spatial characteristics. Utilizing the extra
spatial information, the system infers high likelihood of the
perceived graphs originating from the same location (random
graph), thereby declaring loop closure with high confidence.

Figure 9 presents an example of learning word-pair dis-
tance probability histograms. Figure 9a shows a visual
word that typically appears on the upper half of windows,
occurring repetitively in the environment (Figures 9b and
9c). Figure 9d plots the probability distribution histogram
modeling distances between multiple occurrences of this
word. The variable inter-word distances due to repetitive
structure are captured by the multi-modal distribution learned
through kernel density estimation with optimal bandwidth
estimation. Note that smoothing prevents probability esti-
mates for (unlikely) large distances from becoming zero. This
provides support for a possible later observation in this range
to be incorporated via recursive Bayesian updates for each
bin during data association.

Figure 8a plots the number of scenes vs. number of
features detected in each scene (Nf ), representing scene
complexity, for the combined set of training and test sets (517
locations). The average Nf was found to be 116 (standard
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Fig. 9: Learning word pair histograms. (a) A visual word
that typically appears on the upper half of windows, (b) and
(c) are the typical scenes where the word occurs repeatedly
at regular distances. (d) The learned multi-modal probabil-
ity distribution (histogram) modeling the distances between
multiple occurrences of this word.

(a) (b) (c)

Fig. 10: Practical limitations. Laser scan points projected
into the camera frame are shown in blue. (a) Laser scanner
range is insufficient to cover the entire image causing absence
of range estimates for visual words detected in the upper
portion of the image. (b) The rectangular patch seen on the
background wall forms the shadow for the signpost for the
laser scanner. Hence, no laser points project in this region.
(c) Dynamic objects like moving people can cause incorrect
point clouds to appear in the scene.

deviation 48, median 112). The main additional computa-
tional cost of FAB-MAP 3D over FAB-MAP stems from
the number of inter-word distance probability histograms
updated per scene. Figure 8b plots the number of histogram
updates vs. Nf for the data set. The number of histogram
updates required, scales quadratically with scene complexity
for the complete graph evaluation and linearly for compu-
tation with Delaunay tessellation, illustrating the advantage
of the approximate method with a marginal decrease in
performance (Figure 5). Computing the tessellation scales
log-linearly with Nf , however the Qhull implementation
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is very fast adding little overhead cost (average 12ms per
scene).

Figure 10 illustrates practical limitations of the laser
ranging based approach for estimating 3D positions for visual
words. Different positioning of the camera and the lasers can
cause a disparity in the viewing or sensing regions of the two
sensors. Laser scans projected into the camera frame may
not cover the entire image (Figure 10a), causing absence of
range estimates for some visual features. Figure 10b shows a
rectangular patch on the background wall with no projected
laser points, since for the scanning laser this region appears
in the shadow of the foreground signboard. Additionally,
dynamic objects like people cause scene change between
the image obtained by the camera and the laser scans taken
later in time, causing incorrect point clouds to appear in the
scene (Figure 10c). Also, surfaces axis parallel to the laser
scanner yield very few reflections and hence sparse range
estimates for a surface which could possess many visual
features. Computing the inverse-radially weighted-average of
the 3D coordinates of the projected laser points within feature
radius provides some robustness to such cases.

VIII. CONCLUSIONS

This paper introduced a probabilistic framework for ap-
pearance based topological mapping. In this formulation,
locations are represented as random graphs and a generative
model is learnt over word occurrences as well as their spatial
distributions. This approach provides substantial and com-
pelling improvement in precision-recall performance over the
existing FAB-MAP system. By capturing spatial information,
the algorithm reduces the number of false positives and
shows a dramatic decrease in false negative rate, particularly
in scenes possessing a large number of common words
where a loop closure decision hinges on spatial information.
The framework shows robustness to perceptual aliasing as
well as scene change. The system scales linearly with the
number of places in the map. We also presented a method for
accelerating graph inference based on Delaunay tessellation
of the observed graph, that scales log-linearly with scene
complexity.
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