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Abstract— This paper presents a novel semantic categoriza-
tion method for 3D point cloud data using supervised, multi-
class Gaussian Process (GP) classification. In contrast to other
approaches, and particularly Support Vector Machines, which
probably are the most used method for this task to date, GPs
have the major advantage of providing informative uncertainty
estimates about the resulting class labels. As we show in
experiments, these uncertainty estimates can either be used to
improve the classification by neglecting uncertain class labels
or - more importantly - they can serve as an indication of
the under-representation of certain classes in the training data.
This means that GP classifiers are much better suited in a life-
long learning framework, where not all classes are represented
initially, but instead new training data arrives during the
operation of the robot.

I. Introduction

To be able to perform complex tasks in its environment
and at the same time communicate with a human user on
a semantic level, any mobile robotic system needs some
kind of semantic information about the environment. In most
cases, and also in the context of this work, this semantic in-
formation is given in terms of object or class labels attached
to sensor data that was acquired by the robot. To obtain such
a labeling automatically, a mapping is usually learned from
a set of feature vectors extracted from the sensor data into
a given set of class labels. This can only be done using su-
pervised learning methods, where a human expert manually
annotates training examples which are then presented to a
classification algorithm. The reason is obvious: class labels
are defined by humans and can therefore not be “discovered”
with unsupervised or similar learning techniques. In the
robotics literature, a large body of work is already available
on supervised learning methods for semantic annotation (e.g.
object detection, scene analysis). Most of them use learning
methods such as AdaBoost [1], Support Vector Machines
(SVMs) [2], Probabilistic Graphical Models [3], [4], or other
techniques such as Implicit Shape Models (ISM) [5]. Despite
the impressive results of some of these systems, they all have
one major drawback, which is of particular importance in
mobile robotics: They assume the number of different class
labels to be known beforehand. This means that the training
data has to contain examples of all classes that can potentially
be encountered during operation of the robot. All instances
of unknown classes are then forced to correspond to one of
the known classes, which leads to incorrect classifications.

In this paper, we propose a supervised learning method that
has the potential to overcome this drawback.

We achieve this with a classifier that is based on a multi-
class Gaussian Process (GP) classification algorithm. As we
will show in experiments, our GP classifier can report uncer-
tainty estimates about class labels in cases where the training
data contained less classes than encountered in the test set.
Thus, from these uncertainties there is implicit evidence that
the classifier was trained with too few classes. Furthermore,
these uncertainties can be used to select the next sensor
observation that should be annotated by the human and
added to the training data. This is a key requirement for
an active learning system that is able to adapt its knowledge
as it moves into new environments and thus learns during
operation. Such an active and life-long learning system is
currently the major goal of our line of research, which is the
motivation for the need of the multi-class GP classification
approach presented in this paper.

II. RelatedWork

Several methods for classification and labeling of 3D point
cloud data have been presented in the literature. Here we
review some related efforts. Anguelov et al. [3] proposed a
classifier based on an undirected graphical model (UGM),
that automatically distinguishes between buildings, trees,
shrubs and ground. This was later extended and applied to
indoor data by Triebel et al. [4]. Posner et al. [6] present a
multi-level classification framework for semantic annotation
of urban maps using vision and laser features. The algo-
rithm combines a probabilistic bag-of-words classifier with
a Markov Random Field (MRF) model to incorporate spatial
and temporal information. Xiong et al. [7] explicitly avoid
the use of graphical models and suggest learning contextual
relationships between 3D points based on logistic regression.

In contrast, Nüchter and Hertzberg [2] use a Support
Vector Machine (SVM) to classify indoor objects in 3D range
data. Marton et al. [8] introduce global radius-based surface
descriptors (GRSD) and then use also an SVM for object
classification. Golovinskiy et al. [9] segment 3D point clouds
and compare several classifiers such as SVMs and random
forests to detect objects in urban environments.

Several researchers have applied GPs in robotics mostly
for regression applications rather than classification prob-
lems. For example, Plagemann et al. [10] and Vasudevan



et al. [11] use GPs for terrain modeling. Krause et al. [12]
use GP regression for the problem of optimal placement
of sensors and present a near-optimal mutual information
based selection criterion. Stachniss et al. [13] employ a GP
regression to determine a two-dimensional spatial model of
gas distributions.

Classification using GPs has been addressed by Murphy
and Newman [14], who present an approach for planning
paths using terrain classification information from overhead
imagery. Image regions are first classified using a multi-class
GP classifier followed by spatial interpolation of uncertain
terrain costs. Furthermore, Kapoor et al. [15] use GPs
in an active learning framework for object categorization.
However, in contrast to our approach, the problem there is
not explicitly modelled as a GP classification problem, but
rather as a GP regression where the labels are determined
by least-squares classification. Also, the authors use a one-
vs-all strategy based on binary classification rather than an
explicit multi-class classifier.

III. Segmentation and Feature Extraction

Our algorithm operates on 3D point clouds acquired with
a rotating laser scanner device. The first step in our tool
chain after acquiring a new 3D point cloud, is to produce a
triangular mesh by connecting neighboring data points if they
are closer than a given threshold. We then compute normal
vectors for all triangles and apply a segmentation algorithm
based on the work of Felzenszwalb and Huttenlocher [16],
where the similarity of two adjacent triangles is defined
by the angles of their normal vectors. Each resulting mesh
segment consists of a single connected component and is
consistent with respect to the orientation of the triangles it
contains. Thus, segments are consistently shaped, e.g. all
triangles are all mostly co-planar or they are all similarly
distributed in orientation. An example result of our segmen-
tation algorithm can be seen in Figure 1.

In the next step, we compute feature vectors for all mesh
segments. We use similar features as in earlier work [17],
namely shape factors, shape distributions based on Euclidean
distance, on angles between normal vectors and on the
elevation of the normal vectors, and finally spin images,
where the latter are computed per data point and then an
average is computed per mesh segment. As a result, we
obtain a 113 dimensional feature vector for each mesh
segment, where 50 account for the 5×10 spin image, 20 for
each shape distribution (i.e. the number of histogram bins)
and 3 for the shape factors. These feature vectors, together
with a set of ground truth class labels are then fed into the
training algorithm of the GP multiclass classifier as described
next.

IV. Multi-class Classification using Gaussian Processes

Let x = x1, . . . , xn be a given set of n feature vectors
with dimensionality d and y = y1, . . . , yn corresponding class
labels where yi ∈ {1, . . . , k} and k is the number of classes.
To formulate the multi-class classification problem using a
Gaussian Process (GP), a latent function f j(x) is introduced

Fig. 1: Mesh segmentation. Every segment has a different color assigned.
In this example, the mesh has self-overlapping parts, which is why e.g. the
building is split into several segments. Note that “rough” surfaces such as
those on the trees are segmented as well as smoother regions such as the
ground.

for each class along with the probit regression model. The
probability of a class label yi for a given feature vector xi is
defined as:

p(yi = j | xi) = Φ( f j(xi)) i = 1, . . . , n, j = 1, . . . , k, (1)

where Φ denotes the standard normal cumulative distribution
function, i.e. Φ(z) =

∫ z
−∞N(x | 0, 1)dx. The latent function

f is represented by a Gaussian Process. determined by a
mean function – which in our case is the zero function –
and a covariance function k(xp, xq), usually denoted as the
kernel function. Several different kinds of kernel functions
are used in the literature, where the most common ones
are the squared exponential, which is also denoted as the
Gaussian kernel function. It is defined as

k(xp, xq) = exp
(
(xp − xq)T D(xp − xq)

)
p, q = 1, . . . , n,

(2)
where D is a d × d diagonal matrix. The diagonal entries of
D are known as the hyper-parameters of the model.

In contrast to other supervised learning methods for classi-
fication such as Support Vector Machines (SVMs), Gaussian
Processes are non-parametric, which means that there is no
explicit computation of model parameters in the training
step. However, in GP classification there still needs to be
done some training to obtain the hyperparameters of the
covariance function and the posterior distribution of the latent
function. More specifically, the aim of the classifier is to find
the distribution over values of the latent function given the
training data and some test input x∗, i.e.

(3)

p( f ∗|x1, . . . , xn, y, x∗)
=∫

p( f ∗|x1, . . . , xn, x∗, f)p(f|x1, . . . , xn, y)df,



where we use the notation x∗, f ∗ to refer to the test input and
its function value. This distribution is then used to compute
the class probabilities:

p(y∗ = j|x1, . . . , xn, y, x∗) =∫
p(y∗| f ∗j )p( f ∗j |x1, . . . , xn, y)d f ∗j .

(4)

The main problem here is that the latent posterior p(f |
x1, . . . , xn, y) is not Gaussian and hence Equation (3) can
not be computed in closed form. Therefore, approximations
need to be done, and the main approaches to do this are
the Laplace approximation and Expectation Propagation, as
described in [18]. In this paper, we follow the approach
of Girolami and Rogers [19], where a variational Bayes
formulation is used. During training the hyperparameters
are learned by gradient ascent on the estimated marginal
likelihood. Once the hyperparameters and the latent posterior
are obtained from training data, inference is performed on
new test input by applying Equation (4).

The full GP classification procedure scales as O(kn3)
where k is the number of classes and n is the total number
of sample points. The scaling is dominated by the cubic
dependence on n due to the matrix inversion required to
obtain the posterior mean for the GP variables. The varia-
tional bayes multi-class GP formulation [19] is amenable to a
sparse approximation by constraining the maximum number
of samples s included in the model. This results in an O(kns2)
scaling where s & n. The informative points are picked
according to the posterior predictive probability of the target
value, intuitively picking points from class boundary regions
which are most influential in updating the approximation of
the target posteriors. For a detailed exposition please refer
to [19], [20] and [21].

Compared to a discriminative classifier like SVM, the
GP classification framework offers certain benefits making
it particularly suitable for our application. GPs possess a
probabilistic formulation and express belief over the latent
function via marginalization as opposed to minimization
in SVMs and hence provide uncertainty estimates for the
distribution over classification labels [22]. This is more
principled than a heuristic approach of using the distance
from the classification boundary (margin). A high uncertainty
in the GP classification output distribution can give evidence
for a category not modeled during training and hence can
be used to actively seek examples for incremental training.
Additionally, the GP kernel parameters and noise models are
interpretable and can be learned without cross validation,
which is significant if less data is available for a rare
category.

V. Experimental Results
In the following experiments, four statements will be

shown. First, the multi-class GP classifier gives very good
classification results on our 3D outdoor data. Second, mis-
classifications can be detected, because the GP classifier
provides uncertainty estimates about the resulting labels. This

Fig. 2: Our robotic car, equipped with a 3D laser range finder on the top
of the roof.

Fig. 3: Mesh representation of our test site. The area mainly consists of
buildings, trees, hedges, and roads. The data was acquired with our robotic
car “Wildcat”, which is equipped with a 3D laser scanning device and very
accurate positioning sensors.

can be used to improve the precision of the classifier even
further. Third, in comparison with SVMs, which are probably
the most often used method in robotics, GPs perform at least
equally well, even if they are chosen to be sparser than
the SVM. And finally and most importantly, when trained
with too few classes (in our case two instead of six), the
estimated class label uncertainties are much higher when
using GPs, making them much more useful for detecting
unknown classes in the training set.

A. Data sets and training

We acquired data with our autonomous car Wildcat (see
Figure 2), equipped with a 3D scanning device consisting
of three SICK LMS-151 laser scanners that are mounted
vertically on a rotating turn table. The rotation frequency
was set to 0.1Hz. For our experiments, we drove the car
slowly (≈ 15km/h) around our research site at Begbroke
science park in Oxfordshire. A mesh representation of the
acquired data is shown in Figure 3. The data we obtained is
comparably dense: each point cloud consists of 100,000 to
150,000 points.

PCA was used for dimensionality reduction retaining 10
principal components from the original 113 dimensional
feature vector. Figure 4 (left) plots the eigen magnitudes
obtained. Note that very few principal directions capture
most of the data variance. To perform the multi-class GP
classification we used the Variational Bayes Sparse Gaussian
Process approach by Girolami and Rogers [19]. During
training the (in-sample) marginal likelihood was monitored
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Fig. 4: Left: Plot of eigen value magnitudes after PCA on 113 dimensional
feature vectors. Note that very few principal directions capture most of the
data variance. Right: F0.5-measure comparison of GP classifier with a naive
classifier making random decisions based on relative sample frequency. The
random classifier performs much worse than the GP classifier.

for convergence within 1% increase tolerance. The process
converged for all runs within 45 conjugate gradient iterations.

For evaluating the classification performance of the sys-
tem, a subset consisting of 1497 segments from 53 lidar
point clouds was hand-labeled into six categories frequently
encountered in outdoor urban scenes: building, tree, ground,
hedge, car and background. The data set was randomly
split into test and training with test fractions varying as
0.3, 0.5 and 0.8. Note that our test data was unbalanced,
there were more segment instances for some classes like
trees and ground compared to building and cars due to
their shape complexity (reflecting in the number of segments)
and natural occurrence frequency in the environment. As
suggested in [6], for a more realistic evaluation of the
classifier in real settings the data set was not equalized. Thus,
we report classifier performance per-class instead of average
due to unbalanced class sizes.

B. Quantitative results
The GP classifier gives a distribution over labels for test

data. By taking the maximum-likelihood class assignment,
the per-class precision and recall values were estimated
and listed in Table I for the run with test fraction 0.5.
Precision and recall can be combined into a Fβ-measure as
given in Equation 5. Here, parameter β refers to the relative
importance assigned to recall performance over precision. As
suggested in literature [6], we use β = 0.5 assigning greater
importance to precision accuracy over recall.

Fβ =
(1 + β2)(precision × recall)

(β2 precision + recall)
(5)

The classifier attains high F0.5-measure performance for
ground (0.98) and building (0.95) and lower accuracy for
classes hedge (0.89), car (0.82) and background (0.77).

Figure 4 (right) compares the GP classifier performance
(F0.5-measure) with a naive classifier making random de-
cisions based on class frequencies in training data. The
accuracy of the random classifier is much worse than the
GP classifier.

Figure 5 visualizes the confusion matrix where values are
normalized along rows. Hence, diagonal values represent
per-class recall, indicating the extent to which the ground
truth assignments are retrieved. Note that categories car,
background and hedge are confused in recall with the tree

Fig. 5: Confusion matrix (normalized) resulting from the GP classifier.
Recall values appear along the diagonal. Results with test fraction: 0.5.

Fig. 6: Confusion matrix (normalized) resulting from the GP classifier.
Precision values appear along the diagonal. Results with test fraction: 0.5.

class. Figure 6 presents the confusion matrix with values
normalized vertically. Each column represents the accuracy
of the classifier labeling and the diagonal values represent
precision. Overall, the classifier shows good precision per-
formance. Some confusion is observed between hedge and
car categories.

Next, we calculated the entropy values for each label
distribution for a segment to quantify the uncertainty in
the classification of that segment. This was normalized to
0 to 1 range by dividing by log(k) the maximum entropy
of a uniform distribution over k class labels. An incorrect
maximum likelihood assignment frequently results when the
label distribution entropy is high. By thresholding the nor-
malized entropy in increments from 0 to 1 and considering
assignments only where the classifier is certain above the
threshold, the class-specific precision and recall values are
calculated. Figure 7 plots the precision-recall curves for two
runs with test fractions 0.5 and 0.8. For the case with test

TABLE I: Precision, Recall and F0.5-measure peformance for GP classifi-
cation for all six categories in the data set. Test fraction: 0.5

Name train:test Precision Recall F0.5-measure
Building 70 : 62 0.94 1.00 0.95

Tree 362 : 357 0.90 0.98 0.91
Ground 114 : 115 0.99 0.96 0.98
Hedge 91 : 100 0.90 0.86 0.89

Car 74 : 75 0.88 0.64 0.82
Background 37 : 45 0.82 0.62 0.77
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Fig. 7: Precision-recall curves (per-class) obtained by thresholding on the
normalized entropy of the label distribution for classes. Left: Classes tree,
car and background. Right: Classes building, ground, and hedge. Top: Plots
with test fraction: 0.5. Below: Plots with test fraction: 0.8. Note the scale
on y-axis.

fraction 0.5, Figure 7 (top), classes ground, building and
hedge attain 100% precision at a maximum recall of 93%,
56% and 54% respectively. By accepting a slightly lower
precision of 90%, nearly 100% of the ground truth can be
retrieved for building and ground classes and 86% for class
hedge. The curves for classes car and background are lower.
At 90% precision both classes have a lower recall of 60%.

When the GP is trained with a higher test fraction of
0.8 a general decline is observed in the precision-recall
performance as shown in Figure 7 (bottom). The decrease is
small for classes like building, ground and hedge and is more
significant for the class car for which recall decreases from
60% to 27% at 90% precision level. In both experiments,
class tree displays a gradually declining curve which may be
attributed to significant variation in the entropy values from a
large number and varied segments obtained as category sam-
ples. In general, using a lower normalized entropy threshold
was found to improve precision at the cost of lowering recall
since uncertain true positive class labels are also suppressed.
This allows the user to obtain an application specific value
of the entropy threshold.

C. Qualitative results
Figure 8 shows an example of the classification result for

one triangle mesh from our data set. The left image shows
the ground truth labeling obtained from manual annotation.
The center image depicts our classification result using the
multi-class GP classifier. One can clearly see that there are
only minor classification errors. The most obvious ones are
in the front on the hedge surrounding the car park. Here,
the classifier generated the label car. However, the labels
in that area are not very certain, which can be seen from
the right image in the figure. Here, the normalized entropy
is visualized with color values between green (no entropy)
and red (entropy equal to 1). We can see that the class
label distributions of the segments in the front have a much
higher entropy than others such as those on the ground. This

means that the classification result can be improved even
further, if required, by neglecting all label assignments where
the entropy of the label distribution is too high. Of course,
such a conservative classifier will have a weaker recall
performance (as shown in the previous section), but in some
applications the reduction of false-positive classifications is
more important.

Figure 9 shows the classification result of 9 consecutive
meshes in one common image. We note that there are slight
labeling errors even in the ground truth (left image). This is
caused by imperfections in the segmentation process, which
lead to under-segmentation. For example, some few segments
contain sensor readings from the building and the ground.
As it is impossible to determine a single true label for these
segments, we decided to assign the ground truth label based
on a majority voting during annotation. From the figure we
can see that the qualitative result corroborates the outcome
of the quantitative evaluation: in general, the classification
is very good, only the under-represented classes such as car
and hedge are classified slightly worse.

D. Classifier Comparison
We compared the generative GP classifier with a discrim-

inative SVM classifier using the LIBSVM implementation
of Chang and Lin [23]. In all cases, we employed the
squared exponential kernel to facilitate comparison. Table II
compares the F0.5-measure performance of the two classifiers
with test fractions: 0.3, 0.5 and 0.8. The total number of
support vectors (indicating model sparsity) obtained during
SVM training were noted for each run. The GP classifier
sparsity parameter S was set to a value close to but smaller
than the number of support vectors used by SVM. The F0.5-
measure performance for the GP and SVM classifiers was
very similar, even with a sparser representation used for the
GP. The experimental result accords with similar findings by
Naish-Guzman et al. in [24].

Next, we compared the uncertainty estimates of the proba-
bilistic classification output of the two classifiers to new ob-
ject classes not used in training. We trained the GP and SVM
classifiers only on segments from two classes (randomly
picked): building and ground. Data from the remaining
un-modeled classes was presented to both classifiers for
inference, resulting in a classification distribution over binary
labels. The normalized entropy values measuring uncertainty
in the classification decision were computed for each label
distribution.

Figure 10 presents the normalized entropy histograms for
the inference set. The SVM classifier commits a large major-
ity of the un-modeled points to one of the modeled classes
with high certainty, resulting in a peaked distribution over
one of the two labels. As a result, for a majority of the data
points, the label distribution has lower normalized entropy. In
contrast, the GP classifier assigns higher normalized entropy
for a majority of the test points. The same pattern was found
consistent for other choices of training and testing classes.
The classifier uncertainty for the test points from new classes
is expressed as a more uncertain (uniform) distribution over
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actually correspond to more than one class is not possible. In our evaluation we abstract from such segmentation errors. Right: Classification result. Only
minor errors are visible. Note again the hedge in the front, but also on some cars.
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Fig. 10: Histogram of normalized entropy values of the label distribution
for SVM and GP classifiers. Both classifiers were trained explicitly on two
classes. The data from the remaining classes was presented for inference.
Left: SVM classifier assigns a majority of the points to a particular class
with high certainty. Right: As a contrast, GP classifier assigns greater
classification uncertainty to a majority of the points, providing evidence
for a potential new class. Note the scale on y-axis.

labels, indicating the presence of one or more potentially
un-modeled classes.

VI. Conclusions and FutureWork
The mid-term goal in our current research is an actively

learning mobile robotic system that acquires semantic knowl-
edge by supervision, but during system operation, i.e. in a
life-long learning framework. However, this knowledge needs
to be added incrementally and selectively, because no human
would be willing to annotate all new sensor observations
from the robot. Unfortunately, none of the currently used
supervised learning algorithms can provide sufficient means

to select the next observation that needs human annotation.
In this paper, we show that when using multi-class GP
classification this selection actually can be done based on the
uncertainty estimates of the class labels that the GP classifier
inherently provides. We also show that there is no loss in
performance when using a GP classifier, even if a higher
level of sparsification is chosen. These results demonstrate
the power of the GP classifier for this purpose, and thus
provide an important step towards life-long learning robot
systems.
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