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Abstract. This paper is about labelling regions of a mobile robot’s workspace using
scene appearance similarity. We do this by operating on a single matrix which expresses
the pairwise similarity between all captured scenes. We describe and motivate a sequence
of algorithms which, in conjunction with spatial constraints provided by the continuous
motion of the vehicle, produce meaningful workspace segmentations. We provide detailed
experimental results from various outdoor trials.

1 Introduction and Related Work

We would like a mobile robot to group and label similar regions of its workspace. As
it traverses through an extended workspace it is likely to pass through regions with
a distinct nature and character. Classifying these regions into natural partitions
not only adds higher order meaning to any maps built by the vehicle but can also
constrain the computation required in localisation. We show how combining topo-
logical constraints with scene similarity can lead to a useful and credible clustering
of scenes into distinct classes.

The bulk of recent research into autonomous platform navigation has used sen-
sors to extract and eventually infer solely metric information. There is no doubt
that great progress has been made, particularly in the context of the SLAM prob-
lem. However, appearance-based techniques may also have an important role to play
[1–3] and in this paper we discuss how appearance-based reasoning can be used for
workspace classification. We use the term “scene” to mean the local workspace of
the vehicle as captured by onboard sensors (which could be laser, cameras, radar
or sonar). By defining a suitable metric, “scene similarity” becomes a scalar rang-
ing between zero and unity representing utter dissimilarity through to carbon-copy
replication. Finding representative classes of scenes based on such a measure is a
particular instance of a problem commonly referred to as Knowledge Discovery in
Databases (KDD):

”...the nontrivial extraction of implicit, previously unknown, and poten-
tially useful information from data. KDD encompasses a number of differ-
ent technical approaches, such as clustering, data summarizing, learning
classification rules, finding dependency networks, analyzing changes, and
detecting anomalies.” Piatetsky-Shapiro et al. [4, page 77]

The related literature is extensive indeed but document retrieval [5], index-
ing [6,7] and appearance-based image classification [8–10] are most relevant to the
work presented here. Commonly supervised learning methods are applied, where
models are trained using labelled data, and evaluated on a separate set of test
data [11]. Our goal however is to enable a mobile robot automatically to extract
meaningful concepts from the given data, and we investigate to what extent un-
supervised learning can help to solve this problem. In particular, we seek to find
algorithms that produce consistent representations for distinctive places or com-
mon environment classes. In this sense, our work differs from document retrieval
or indexing where queries are answered by finding the most similar documents. We
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note that the representation of underlying themes is not explicitly generated, but
also seldom necessary.

There exist a great deal of literature on unsupervised and semisupervised learn-
ing Though it is beyond the scope of this paper to give an exhaustive review, scene
and object classification in computer vision has made great progress in the last
decade [9,10,12]. For example, Bosch et al. [8] have successfully used Probabilis-
tic Latent Semantic Analysis (pLSA) [7] to automatically learn models of objects
and environment classes. Due to its computational complexity, methods using EM
learning to fit model parameters are not particularly well suited for mobile robotic
applications. Since the robot moves about the environment and gathers the data
in a sequential manner, there is a temporal ordering in the data that implies local
spatial relationships. To the best of our knowledge, this topological information
has not been exploited within the robotics research community.

In the following sections we will describe and provide experimental results of
a system for semantic labelling of contiguous workspace locations. Our method
is designed for use on mobile platforms, being swift and able to explicitly take
advantage of the vehicle motion. Its input is the pairwise similarity between all
scenes and we shall emphasise the consequences of when the fidelity of this measure
is imperfect. While we detail the use of images, the method is equally applicable
for any sensor modality for which an appearance-based similarity measure can be
defined.

2 From Scenes to Similarity

Consider the impressions of two scenes, Su and Sv; we do not at this stage need
to describe in detail what constitutes these impressions – they could for example
be images, laser scans or radar sweeps. However, we shall often use the case of an
image as a concrete example of Su to illustrate our adopted approach. From each
scene, Su, n regions of interest are extracted and each region encoded by a suitably
chosen descriptor vector. This mapping D : Su → [d1 · · · dn] transforms the scene
into a list of vectors whose length n is a function of the complexity of the particular
scene in question. In the case of an image, for example, we use a Harris Affine ROI
detector [13], because of its wide baseline invariance, and a SIFT descriptor [14]
yielding a set of 128-dimensional vectors. As in [10], the next step involves the
clustering of all descriptor vectors from a training set of input data. This operation

is an off line task and yields a set of cluster centres V = [d̂1, d̂2, · · · d̂|V|], which
collectively are often referred to as a “code-book” ,“visual vocabulary” or “bag-
of-words”. The size of the vocabulary is |V|. Words that are ubiquitous, perhaps
appearing in every scene, have reduced descriptive power compared to those that
occur rarely. When we come shortly to using the word-content of scenes to measure
inter-scene similarity, common words should have less weight. A commonly used

weight scheme is the Inverse Document Frequency (IDF) [15]. Here each word d̂i

is assigned a weight wi = log N
ni

where N is the total number of scenes (images)

gathered and ni is the number of scenes in which d̂i occurs. We can now define
a similarity function 0 < S(u, v) < 1 between two scenes Su and Sv. Each scene

is quantised into a vector of length | V | where the ith element is wi if word d̂i

is present and zero otherwise. A simple choice for S is then the cosine distance
between the two vectors — scenes that have no common features will have zero
similarity and those with complete intersection will have a similarity of one. We
emphasise that what we have described here is just one of many ways to formulate
S. We do not however mean to be prescriptive; in general we require only that
some function S exists which expresses the similarity.
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A construct central to our work is the similarity matrix M. Each element, Mi,j ,
is the similarity between scenes i and j. Figure 1 shows typical similarity matrices
constructed using visual and laser scenes. The dominant diagonals are caused by
all scenes being self similar. The off-diagonal stripes, where visible, are indicative
of loop closures and the banding is due to broad, wideband, scene similarity.

Fig. 1. Four similarity matrices for four markedly different workspaces. From left to right
(with sensor used ) : the exterior of a tower block (camera), an excursion around some
formal gardens (camera), a loop around architecturally uniform cloisters (camera), and a
loop around the interior of a building (2D laser).

3 Scene Classification

The annotation of maps with semantic information carries intrinsic value and is
being researched from a variety of perspectives. See, for example, [16] which uses
boosting and spatial smoothing to classify indoor workspaces. As an additional
motivation, learning of outdoor scene classes presents the opportunity to reduce
the computational expense involved in loop-closure detection by partitioning the
search space. If, for example, recent images appear to belong to scene class Park

then all images of scene type Building can be discounted when looking for loop
closure — park-like scenes rarely suggest loop closures within buildings.

The use of just the similarity matrix to attempt place labelling is mainly moti-
vated by the following two reasons. Firstly, in our SLAM system, this matrix has
already been built for use in loop closure detection as described in [2]. Secondly,
we are working towards replacing the similarity entries in M with probabilities
— which would allow principled fusion of scene appearances as perceived by a
heterogenous sensor suite. Nevertheless, the central data structure will remain a
matrix encoding inter-scene equivalences. This representation, while compact and
advantageous for some tasks, is not sufficient for some of the more common cluster-
ing algorithms (such as k-means). Although multidimensional scaling [17] can be
employed to transform the data into a metric space, this transformation comes at
the cost of inaccurately representing the relative positions of individual exemplars
and consequently results in unsatisfactory clustering performance.

Interpreting the similarity matrix as a graph G where the vertices are image
locations and the edges are the similarities between images, Normalised Graph
Cut (NGC) [18] can be applied recursively, terminating when no clear partitioning
exists.1 Aside from the cost of solving multiple eigen-problems we found the pro-
cedure to suffer from two issues. One difficulty was the convergence and stability.
Secondly, it was not always clear how to decide if a putative partition was valid.

1 NGC finds a bipartite partition of G which minimises a metric that considers both the
total dissimilarity between different groups and the total similarity within the groups.



4 Posner, Schroeter, Newman

This became increasingly problematic as the depth of the recursion increased and
accordingly the size of the (sub)-graph being processed decreased.

Hierarchical clustering [19–21] is a well established technique based directly on
a distance metric. Commonly, grouping of N data is achieved by iteratively merg-
ing clusters starting with N individuals (agglomerative). At each stage individual
clusters are fused which are in some sense most ‘similar’. The choice of similar-
ity measure has important implications on clustering performance. Single linkage
considers the maximum inter-cluster pairwise similarity and generates a minimum
spanning tree over the data. Single linkage does not take account of cluster struc-
ture and tends to produce unbalanced and elongated clusters (chaining effect).
Complete linkage considers the minimum inter-cluster pairwise similarity and thus
merges clusters to produce a complete subgraph with respect to some threshold,
connecting all edges between all nodes. Complete linkage does not take account
of cluster structure and tends to produce compact clusters with equal diameters.
It is most suitable when the true clusters are compact and roughly equal in size.
Mean linkage considers the average inter-cluster pairwise similarity and tends to
join clusters with small variances. It takes some account of cluster structure.

Our similarity data are subject to a substantial amount of noise caused by vari-
ations in image quality due to changing imaging conditions and the motion of the
imaging system itself. Therefore, decisions based on individual similarity values
such as in single and complete linkage are prone to producing unsatisfactory clus-
ters. Even though this effect was ameliorated somewhat when using mean linkage,
substantial classification errors remained.

3.1 Algorithm Outline

If we assume that workspaces often contain extended contiguous regions of similar
character then images taken in sequence are more likely to depict a similar class
of environment than images taken at random locations. Agglomerative clustering
lends itself readily to the incorporation of such a sequence constraint. However, we
found that, if an agglomerative clustering scheme is to be employed successfully
on our data, a different similarity measure is required that takes account of cluster
structure in terms of the number of pairwise connections gained by a possible
merger.

Experiments further showed that the initial construction of highly consistent
seed clusters drastically improves classification performance — this is justified since
these seeds are representative of the final cluster characteristics and provide sup-
port when evaluating a similarity function based on cluster consistency. Adding a
simple classification stage allows evaluation of the degree to which the resulting
workspace classes are representative of the robot’s environment. Thus, we propose
the following sequence of processing steps (see Figure 2):

1. Construct consistent seed clusters from M using a sequence constraint.
2. Determine the similarity between existing (seed) clusters.
3. Starting with the seeds, construct workspace classes

by iteratively merging suitably chosen clusters.
4. Classify all as yet unclassified images as belonging

to one of the existing workspace classes.

Seed Cluster Construction A graph theoretical interpretation of a similarity
matrix is attractive and it is tempting to equate the construction of highly consis-
tent seed clusters to the finding of cliques. However, given the noise in the similarity
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Fig. 2. From similarity matrix to workspace classes.

data, a strict construction of cliques tends to reduce the size of the seed clusters.
This counteracts the supportive role that the seed clusters are intended to fulfil.
Instead we propose the cluster seeding procedure given in Algorithm 1 in Table 1.
In line 5, for every image i, a list of indices of similar images is drawn up and
sorted according to similarity. The spatial constraint is introduced at this stage
(line 8) by eliminating all members that are not part of a sequence. Thereby a
certain leeway is given as to how many members may be missing from a sequence
(three, in our case) to still be identified as being adjacent. The minimum length
lmin of the resulting sequence is set to three for all experiments. Line 12 admits
this seed cluster if image i is a member of this well connected, self similar set. Thus
a set of highly consistent clusters is created which exploit the sequential nature
of the data. Once all images have been considered the resulting seed clusters are
inspected and clusters which form subsets of other clusters as well as carbon-copy
clusters are eliminated. Typical resulting clusters are shown in Figure 3.

Fig. 3. Sample images from two seed clusters from the New College data set. These seeds
were ’grown’ into clusters 5 (top row) and 3 (bottom row) shown in Table 4.

Cluster Similarity We judge the similarity of two clusters by their inter-connectivity.
It is tempting to adopt a strategy whereby only the connectivity of the resulting
cluster is considered. However, with such an approach the connectivity of a rel-
atively large cluster would dominate the merging decision. We consider only the
connectivity of the intersection of the two sets and the inter-connectivity of their
relative complements. With reference to the centre panel of Figure 2, two clusters
Ci and Cj can be factored into their intersection, S, and their complementary sets,
P and Q. Let Ci,j denote the union of Ci and Cj and |Ci,j | its cardinality Nm.
The potential number of pairwise adjacent vertices (all potential pairs), NE , in Ci,j
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Algorithm 1: SeedClusters Algorithm 2: MergeClusters

1: input: MN×N similarity matrix, min

cluster size cmin, similarity threshold

smin, minimum sequence length lmin

2: output: seed clusters Co =

{C1, C2, · · · }

3: Co ← ∅

4: for i = 1 : N do

5: S← SORT(FIND(M[i, :] > smin))

6: Ci ← ∅

7: for j = 1 : |S| do

8: if FIND ADJACENT(S,S[j]) 6= lmin

then

9: Ci ← {Ci,S[j]}

10: end if

11: end for

12: if |Ci| > cmin ∧ i ∩ Ci 6= ∅ then

13: Co ← {Co, Ci}

14: end if

15: end for

1: input: seed clusters Co = {C1, · · ·CK}

2: output: final clusters C = {C1, · · ·CK}

3: repeat

4: B ← FALSE

5: for i = 1 : K ; j = 1 : K do

6: D(i, j) = d(Ci,Cj)

7: end for

8: for i = 1 : K do

9: j⋆ = MAXELEMENT(D(i, :))

10: if D(i, j⋆) > dmin then

11: i⋆ = MAXELEMENT(D(:, j⋆))

12: if i⋆ == i then

13: Ci ← {Ci ∪Cj⋆}

14: Cj⋆ ← ∅

15: B ← TRUE

16: end if

17: end if

18: end for

19: until !B

Table 1. The outline of the two main algorithms of our approach is shown here, namely
building seed clusters (Alg. 1) and merging (seed) clusters (Alg. 2).
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Based on Equation 2 and the considerations at the beginning of this subsection
we obtain the similarity measure, d(.), such that

d(Ci,Cj) =

(
|S|
2

)
+ | S | · | P | + | S | · | Q | + ǫ

(
Nm

2

)
−

(
|P|
2

)
−

(
|Q|
2

) (3)

where the term |P|×|Q| has been replaced with ǫ, denoting all pairwise adjacent
vertices defined with respect to a threshold smin.

The function d(.) represents a monotonically increasing similarity function over
the range [0 → 1]. An additional advantage of the formulation in Equation 3 is an
interpretation of d(.) as the ratio of vertices added over potential vertices gained by
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a merging operation if sets S, P and Q were themselves complete subgraphs. Thus,
in this case a threshold on the similarity function would specify a lower bound on
the number of vertices in a merged cluster. However, in practice S, P and Q are
well connected but not complete subgraphs. Despite this condition not being met
empirical observations show d(.) to provide a good approximation to such a lower
bound.

Cluster Merging The merging procedure is given by Algorithm 2 in Table 1.
The cluster similarity function d given in Equation 3 is used to construct a cluster
similarity matrix, D (line 6). Considering each cluster Ci in turn, the corresponding
maximally similar cluster, Cj⋆ is identified in line 9. These two clusters are then
merged if Cj⋆ has Ci as its maximally similar cluster (lines 11-12). This merging
criterion of mutual maximal similarity provides an effective termination for the
merging phase.

Classification The classification scheme employed here is a naive nearest-neighbour
classifier based on the mean-linkage criterion. A distance threshold is introduced
below which images are assigned to a default ’unassigned’ cluster.

4 Experimental Results And Discussion

In our experiments an autonomous vehicle equipped with onboard camera, odom-
etry, 3D laser scanner and GPS (for ground truth) was driven around different
workspaces. The sensor data was logged and processed offline although this was
more for convenience than necessity. In fact, the processing of all the data sets
shown (i.e. for about 1000 images) takes less than 30 seconds on a vanilla computer
using Matlab. The proposed algorithm for scene classification has been evaluated
for three different outdoor environments, “Thom Building”, “New College”, and
“Cloister”. The first is dominated by different kinds of buildings (modern and old),
streets, and some lawns. The emphases of the second data set are grass fields,
bushes, some buildings, and an ancient wall framing the area. The Cloister data
set is a loop around 14th century walkways, containing close-ups of ancient brick
walls and views into an enclosed quadrangle. In many ways this data set is similar
to an indoor environment, though it has challenging lighting conditions and an
uneven paved floor. Altogether the data sets cover about 1.5 kilometres of distance
travelled.

Table 4 depicts sample images from clusters found in each data set. The classes
found refer to either certain locations (cluster 3, Thom Building), more general
concepts (both classes for Cloister) or prominent objects like parked cars (cluster 4,
Thom Building). This is not to say that the algorithm in fact learns useful concepts
of objects, but scenes where a certain object takes up most of the field of view are
consistently clustered into the same class. A further example is the black container
in cluster 1 (Thom Building). The most dominant class (in terms of size) in the
New College data set is cluster 2 which can be broadly described by the terms
“Bushes and Plants”. This class also covers near-field views of crumbling walls,
which in the absence of colour have similar texture. From this it seems that adding
colour information to the feature descriptors would be beneficial. This point is the
subject of our ongoing endeavour.

Some clusters represent rather similar concepts, like cluster 4 and 5, which
capture a quadrangle of sandstone buildings. That the two clusters have not been
merged is probably due to the features along the shadows in the scenes of cluster 5.
However, obtaining several clusters for subjectively similar concepts does not lead
to inconsistent labelings, as would be the case if one cluster presented two different
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concepts. For the resulting maps to be useful for human-machine communication,
semantic labels would be manually assigned to the different clusters (similar to the
column ”Description” in Table 2). From this, the representation of concepts can be
updated automatically by fusing clusters with very similar labels.

Fig. 4. This figure presents sample images from the clustered New College (left) and
Cloister (right) data sets. Several different classes were identified for the diverse landscape
of the New College gardens. Only two rather characteristic classes were learned for the
more monotonous Cloister data set.

So far we have shown that the clustering results are plausible in the sense
that clusters do refer to different prominent locations or common themes, although
there might be several clusters describing a similar concept. The question is, to
what extent can these clusters be considered consistent and how well are they
supported by images that have not yet been assigned to any cluster. It is important
to note that the main purpose of the algorithm presented here is to find consistent
clusters, which may cover only a subset of the given data. Nevertheless, classifying
the remaining scenes gives a good indication of the applicability of the learned
concepts and their descriptive power.

Table 2 summarises some statistic properties for each of the generated clusters.
Minimum mean linkage (MML) is the mean of the similarity values between one
cluster member and all the others. Comparing the MML with the mean linkage
value within one cluster implies that the respective scenes (last column in Table 4)
seem to be rather dissimilar to most of the others in the cluster. This is plausible for
cluster 5 (Thom Building) or cluster 2 (New College), though there are other similar
images in these clusters (not depicted here). However, for most of the clusters
this apparent discrepancy with respect to the MML value is not obvious. In fact,
subjectively, these scenes seem to be very similar to the main theme of the cluster.
This shows that despite considerable noise in the image similarities our algorithm
manages to find consistent clusters. These clusters might not be fully connected
(internally), i.e. they contain pairs with low similarity, but they do not comprise
several “subclusters” that only share a single similar pair. This is the strength of
the algorithm presented here. First, it exploits spatial constraints by generating
seed clusters. Second, it introduces a cluster similarity measure in the merging
step that considers the interconnectivity of clusters in a way that can be seen as
a blend of complete and mean linkage. It approximates the number of additional
outliers that would be caused by merging, and relates it to the number of possible
connections and shared cluster members, see also Section 3.1. Thus, it favours
strong interconnectivity like complete linkage, but at the same time tolerates a
certain amount of outliers.
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Thom Building Data Set - 387 images

Clst. ID Description size mean lkg. min mlkg. inlier count

1 black container 27 0.39 0.03 254/351 = 0.72

6 close-up of metal fence 30 0.16 0.03 272/435 = 0.63

7 bicycle stand, traffic cone 49 0.19 0.06 548/1176 = 0.47

4 another black car 15 0.09 0.03 30/105 = 0.29

5 staircase, handrail,
windows, black car

27 0.07 0.02 82/351 = 0.23

3 street crossing, houses, grass 21 0.08 0.04 42/210 = 0.20

2 grass, windows 34 0.06 0.03 78/561 = 0.14

New College Data Set - 570 images

Clst. ID Description size mean lkg. min mlkg. inlier count

5 ancient building 22 0.20 0.09 171/231 = 0.74

4 same as 5, but in the shadow 13 0.11 0.05 24/78 = 0.31

3 ancient wall, grassland/field 28 0.10 0.04 96/378 = 0.25

1 modern house, windows, sand 19 0.09 0.07 32/171 = 0.19

2 mainly bushes & flowerbeds 128 0.09 0.04 1466/8128 = 0.18

Cloister Data Set - 212 images

Clst. ID Description size mean lkg. min mlkg. inlier count

2 dark interior, bright windows 21 0.11 0.07 44/210 = 0.21

1 close up of ancient brick walls 14 0.10 0.08 18/91 = 0.20

Table 2. Clustering results for three data sets. The Description is based on subjective
inspection of the resulting clusters (see also Table 4). mean lkg. is the mean of all similarity
values between members of the cluster. min mlkg. is the minimum of the mean linkage of
each member of the cluster with respect to the others. Finally, the inlier count is the ratio
of all pairs within a cluster whose similarity value falls below smin (see also Section 3.1)
and the number of possible pairings within a cluster, i.e.

`

N

2

´

where N is the size of the
cluster.

Thom Building Data Set

Cluster ID 1 2 3 4 5 6 7

number of classified images 10 20 17 4 0 3 16

error (subjective) 0 0 0.06 0.25 - 0 0

New College Data Set

Cluster ID 1 2 3 4 5
number of classified images 7 86 3 4 6

error (subjective)) 0 0.01 0 0 0.67

Cloister Data Set

Cluster ID 1 2
number of classified images 29 51

error (subjective) 0.1 0.26

Table 3. Results for classifying scenes that are not part of the cluster descriptions. Due
to insufficient similarity some images are not classified, in particular 114 for the Thom
Building data set, 254 for the New College data set and 97 for the Cloister data set.

5 Conclusions

In this paper we have presented a method for workspace labelling in the context
of mobile robot mapping. The algorithm makes explicit use of the consecutive
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nature of the acquired data by forcing spatial constraints in a pre-clustering step.
The resulting seed clusters are merged with respect to a cluster similarity measure
that balances between the number of expected outliers, all possible connections
and the number of common elements. Using an additional criterion, which we call
mutual maximal similarity between clusters, the algorithm converges very fast.
The algorithm has been evaluated on different outdoor data sets, and shown to
produce plausible concepts of scenes. It is particularly robust to noise in the image
similarities that arises from motion blur and variability of image quality.
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Thom Building Data Set - 387 images

Cluster 1
...

Cluster 2
...

Cluster 3
...

Cluster 4
...

Cluster 5
...

Cluster 6
...

Cluster 7
...

New College Data Set - 570 images

Cluster 1
...

Cluster 2
...

Cluster 3
...

Cluster 4
...

Cluster 5
...

Cloister Data Set - 212 images

Cluster 1
...

Cluster 2
...

Table 4. Images for all clusters (and data sets) as presented in Table 2. Note that some
clusters seem to describe particular locations within the environment, e.g. cluster 3 of the
Thom Building data set. Others refer to more general concepts (Cloister data set, cluster 2
and 3 of the New College data set). And some seem to be dominated by prominent objects
like parked cars or containers (cluster 1 and 4 of the Thom Building data set).


