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Abstract— This paper addresses the question of how much
a previously obtained map of a road environment should be
trusted for vehicle localisation during autonomous driving by
assessing the probability that roadworks are being traversed.
We compare two formulations of a roadwork prior: one based
on Gaussian Process (GP) classification and the other on a
more conventional Hidden Markov Model (HMM) in order to
model correlations between nearby parts of a vehicle trajectory.
Importantly, our formulation allows this prior to be updated
efficiently and repeatedly to gain an ever more accurate model
of the environment over time. In the absence of, or in addition
to, any in-situ observations, information from dedicated web
resources can readily be incorporated into the framework. We
evaluate our model using real data from an autonomous car and
show that although the GP and HMM are roughly commensurate
in terms of mapping roadworks, the GP provides a more
powerful representation and lower prediction error.

I. INTRODUCTION

Autonomous vehicles are expected to play a key role
in future intelligent transport systems. Recent successful
approaches to autonomous driving leverage prior maps of the
environment traversed in order to engineer away some of the
complexities of on-road navigation, environment interpretation
and vehicle interaction (see, for example, [1], [2]). Such
approaches inherently make the intuitive assumption that
the layout of roads and related infrastructure is largely
static. However, this can lead to potentially catastrophic
failure when the information contained in the map is no
longer correct. This is commonly the case when encountering
roadworks: the road layout may change and temporary control
infrastructure, such as traffic lights or stop signs, may be put
in place. In 2009/2010, Transport for London (TfL) recorded
about 370,000 roadworks carried out by London’s public
utilities and highway authorities [3]. This figure is typical
for most major cities and motivates the need to account
for changing road structure. If autonomous vehicles are to
function reliably in areas of road maintenance – either by
taking appropriate action autonomously or by handing over
control to a human operator – the correctness of the map prior
must be assessed continuously. We envision a system catering
for the continuous evolution of prior information - using a
multitude of information sources - to be an essential stepping
stone towards truly adaptive driver assistance systems and,
ultimately, vehicle autonomy. This motivates our work.

The primary contribution of this paper is a framework
for mapping roadworks, that seamlessly combines web-based
resources with in-situ observations to update a roadwork prior,
queriable at any point along a trajectory. The assessment
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Fig. 1. Data fusion of web-based resources (e.g. websites citing the expected
locations of roadworks) and in-situ observations (detections of roadwork
indicators as in Fig 2) to estimate a roadwork prior.

expressed by this prior is based on several sources of
information: firstly, in the absence of any other information,
an intuitive scepticism reflecting the general likelihood of
roadworks; secondly, in-situ observations of features such as
signage or traffic cones, indicating the presence (or otherwise)
of roadworks; and thirdly, information about ongoing road-
works provided by government agencies and disseminated
via the Internet. We first describe a novel formulation of
Gaussian Process (GP) classification, allowing for the use
of noisy observations in order to account for correlations
between observations from nearby points along the continuous
trajectory. We compare this to an HMM formulation with
continuous node observations. Both formulations enable life-
long or multi-agent learning in that observations from multiple
traversals of the same route are fused to continuously refine
the prior until it converges to the ground truth. An overview
of our proposed system is shown in Figure 1.

For the remainder of this paper we consider a scenario
where a single vehicle traverses the same route multiple times.
Following a review of related works in the next section,
we describe how roadwork observations are acquired in
Section III. Both generative models underlying our roadwork
prior are introduced in Section IV and evaluated using real
data in Section V. Conclusions are drawn in Section VI.

II. RELATED WORKS

The development of driver assistance systems including
the detection and navigation of roadworks is an active area
of research in the automotive industry (see, for example, the
European Commission’s HAVEit project [4] or Volkswagen’s
Temporary Autopilot (TAP) system). Much previous work has
addressed the problem of detecting and classifying objects
pertinent to autonomous driving such as obstacles on and
alongside roads (see, for example, [5]). There also exists a
body of literature on the detection of road signs (see, for
example, [6], [7]). However, the exploitation of prior maps
of large-scale road networks for autonomous driving is a
relatively recent development. To the best of our knowledge,
the explicit modelling of the occurrence of roadworks based
on a variety of information sources has not been addressed
before.
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Fig. 2. The roadwork indicator objects that form the basis of our in-situ
observations.We train classifiers to detect these objects.

III. ROADWORKS OBSERVATIONS

Various sources of information exist on which to base a
model for the presence of roadworks at a given location. Here
we briefly describe the two sources exploited in this work:
in-situ observations obtained by an autonomous vehicle and
derived from image data; and information from the Internet.
The models derived in Section IV will be agnostic to the
source of the information provided and will take as input
simply observations. Let y(x) represent the true binary label
at a position x along a trajectory such that y(x) = 1 implies
roadworks, y(x) = −1 implies not-roadworks. z(x) is the
vector of roadwork observations, and Z is the matrix.

A. In-Situ Observations
In-situ observations are gathered by a vehicle as it travels

along its trajectory. For the benefit of human (and non-human)
drivers, roadwork sites are commonly marked by visible
objects (roadwork indicators) examples of which are shown
in Fig. 2. Let an in-situ observation, zis, be defined as a binary
vector in an N -dimensional feature space such that zis =[
z1is, z

2
is, . . . , z

N
is

]T
. Each element ziis denotes the presence

or absence of a feature derived from a particular roadwork
indicator in a scene. In this work we exploit the presence or
absence of any one of the roadworks indicators in Fig. 2.

Each image taken along a trajectory gives rise to an
observation. Individual elements of the observation vector are
set by applying dedicated object detectors to the associated
image. The vision community has expended much effort to
develop object detectors for a variety of objects pertinent to
autonomous driving such as road signs. Here, we leverage
a template matching approach as introduced in [8] within a
detection framework based on GentleBoost [9]. In particular,
a separate detector is trained for each one of the seven
classes of common roadwork indicators listed in Fig. 2 using
data gathered from the web. Observations are transformed
into likelihood scores, p (zis|y), using a naïve Bayes model
which assumes that roadworks indicators occur independently
from one another. Correlations between individual roadwork
indicators are not directly modelled since the main focus of
this work is the formulation of a roadwork prior. Thus,

p (zis|y) =

N∏
i=1

p(ziis|y). (1)

B. Observations from Web Resources
Several online sources detailing locations of road disrup-

tions exist. In this work, we harvest data from the Oxfordshire

county council website1 as another source of observations.
The website provides a comprehensive list of possible road
disruptions, including roadworks. The point location, severity,
estimated duration and type of road disruption is given.
However, no indication of the extent or exact layout of the
roadworks are provided – knowledge of which is essential if
the use of a prior map is to be maximised.

In order to transform these observations into likelihood
scores, p (zweb|y), for use in our model we need to assign a
degree of trust in the correctness of the information provided.
For this work we empirically set this trust to be complete:

p (zweb|y = roadworks) = 1.0, (2)
p (zweb|y = not-roadworks) = 0.0. (3)

It is worth noting that the trust placed in the city council
information affects our predictions. This parameter can be
tuned depending on the information source used; our faith
in the city council may vary between municipalities and
certainly from country to country. Alternatively, if desired,
it could also be learned. Note also that even in this case of
complete trust, given sufficient contrary evidence from our in-
situ observations, our algorithm can recover from erroneous
city council reports.

The roadworks model introduced in the next section does
not differentiate between the source of an observation. For
simplicity, in the remainder of the paper we will therefore
drop the subscripts denoting whether an observation has been
made in-situ or stems from a web resource.

IV. THE ROADWORK PRIOR

We view roadwork detection as a problem of Bayesian
inference. Our goal is to deduce the probability of roadworks
being present at any point in continuous space and time,
given in-situ noisy observations and uncertain data from the
web. To model this, we consider both a Gaussian Process
and HMM roadworks function to allow us to compute the
posterior probability of any point belonging to roadworks.

A. Hidden Markov Model for Roadwork Mapping

Hidden Markov Models (HMMs) provide a powerful
framework for probabilistically modelling sequential data.
A HMM is comprised of a set of variables for T discrete
steps, y1:T (representing the vector of latent variables) and
Z ′1:T (representing the matrix of observations) that adhere
to predefined conditional independence assumptions. These
assumptions can be summarised by the joint distribution over
all variables given by:

p(Z ′1:T ,y1:T ) = p(y1)

T∏
t=2

p(yt |yt−1)

T∏
t=1

p(z′t |yt) (4)

The prior distribution p(y1 = i) = πi for each state i
(roadworks or not-roadworks) expresses our initial belief in
the state distribution of the first node of the HMM. πi form
hyperparameters of the HMM, along with the state transitional
probabilities p(yt = i |yt−1 = j) = Gi,j (note: our HMM is

1http://voyager.oxfordshire.gov.uk/network.aspx



time-homogenous therefore transitional probabilities are time-
independent). Finally, we model the observation probability
distributions as Gaussians with mean αj and covariance Aj ,

p(z′t |yt = j) = N (z′t;αj , Aj) . (5)

Hyperparameters πi, Gi,j , αj and Aj are set to the maximum
a posteriori estimates of the parameters using Expecta-
tion Maximization [10]. We train the HMM in batch mode,
using data Z from both in-situ and city council observations.
Our observation matrix Z ′1:T comprises the likelihoods of
both roadworks and not roadworks, each row of which is a
binary vector z′t =

(
p(zt |yt = −1), p(zt |yt = 1)

)
.

B. Gaussian Process Classification for Roadwork Mapping
Gaussian processes (GPs) [11] provide a powerful frame-

work for performing Bayesian inference about functions. A
Gaussian process is a distribution on the functions f : X → R
(on any arbitrary domain X ) such that the distribution of
the function values at a finite subset of points F ⊆ X is
a multivariate Gaussian. A Gaussian process is completely
defined by its mean function µ : X → R and a positive
semidefinite covariance function K : X × X → R. The
mean function describes what we would expect for f before
receiving any data and the covariance function describes how
function values are correlated as a function of their locations.

Given our initial ignorance about the locations of road-
works, we set the mean function to an (unknown) constant
µ. To express our expectation that our roadworks function
be smooth, we choose the squared exponential covariance,

K(x1, x2; λ, Σ) = λ2 exp
(
−1

2
(x1−x2)T Σ−1 (x1−x2)

)
.

(6)
Here λ specifies an output scale for f , controlling the mag-
nitude of its variation. Since there is little inter-dependence
amongst our inputs, we choose Σ as a diagonal matrix whose
diagonal elements represent squared input scales, controlling
the relative scales of variation in each dimension of x. The
parameters of our mean and covariance functions, µ, λ and
Σ form elements of the vector θ, the hyperparameters of our
model. Given data, these hyperparameters of the GP will be
selected as those that return the maximal marginal likelihood.

Given a Gaussian process prior distribution for the function
f : X → R, and a set of input points x, the prior distribution
on f = f(x) is

p(f |x, θ) = N
(
f ;µ(x; θ),K(x,x; θ)

)
, (7)

where K(x,x; θ) is the Gram matrix of the points x and
f is a real-valued latent variable. For traditional, non-noisy,
classification we observe y ∈ {−1, 1} binary-valued class
labels. Our observation likelihood, combined with i.i.d.
Gaussian noise in f , is given by the cumulative Gaussian
observation likelihood

p(y |f, x, σ2) = Φ(yf ; 0, σ2), (8)

Φ(a;µ,C) =

∫ a

−∞
N (a′;µ,C)da′. (9)

For our application, however, our observations are actually
of a quantity z that does not definitively specify a class

Fig. 3. The Wildcat autonomous car, pictured above, was used to collect
the data used in this paper. It is equipped with a Bumblebee stereo camera,
capturing 512x384 colour images at 20Hz and a differential GPS/IMU which
we use for localizing city council observations along the vehicle’s trajectory.
Data was collected over a period of 3 months. In this paper, we process
38.98GB of data.

label. Distinct from some previous work on GP classification
with noisy labels [12], [13], some observations are more
indicative of the label than others; the uncertainty varies
with observation. Other approaches [14], [15], [16] consider
the case in which a binary class label is observed, which
may have been flipped with some probability; we instead
observe only the presence or absence of features as indirect
evidence of our class label. For our application, we propose
an observation likelihood

p(z |f, x, σ2) =
∑

y∈{−1,1}

p(z |y, x, σ2) p(y |f, x, σ2)

=
∑

y∈{−1,1}

p(z |y, x, σ2) Φ(yf ; 0, σ2). (10)

Our non-Gaussian observation likelihood (10) led us to use
Expectation Propagation [17] in order to perform inference.
Expectation propagation approximates our likelihoods (10)
as Gaussians in f , and uses sequential moment-matching
to fit the parameters of each one. Results for both of our
models are discussed in the next Section. While we performed
our experiments in batch-mode, efficient GP updates exist to
enable on-line experiments.

V. EXPERIMENTAL RESULTS

Our roadwork prior was evaluated using image and GPS
data gathered over several kilometres of track with our
autonomous vehicle, a Bowler Wildcat (see Figure 3). The
data collected spans approximately 5km of track covering
roadworks (in both urban and rural areas) classified using
detectors described in Section III-A. HMM classification [18],
[19] was implemented using the PMTK toolbox [20]. Similarly,
GP classification was implemented using the GPML toolbox
[21] with a likelihood function reflecting (10).

We evaluate our methods according to two metrics, both
averages over M locations, indexed by i, and N repeated
trials, indexed by j. Define ỹi,j as the ground truth state
for the ith location in the jth experiment, and p(yi,j |Zj) is
the posterior produced by a method for those states given
observation matrix Zj . Firstly, we computed the root mean
normalised square error,

RMSE =

(
1

M N

M∑
i=1

N∑
j=1

(
ỹi,j − p(yi,j |Zj)

)2)− 1
2

, (11)



a measure of the accuracy of our probabilistic estimates. A
more sophisticated metric is the negative log-density of the
truth, assuming experiments are independent,

NLL = −
N∑
j

log p(yi,j = ỹi,j ,∀i = 1, . . . ,M |Zj) . (12)

A. Synthesised Excursions

Using real images gathered with our autonomous vehicle,
we set up synthesised excursions by defining a fixed road inter-
val containing a unique ground-truth roadworks configuration.
For this road interval, we allow our algorithm two points at
which roadworks have been identified, simulating the county
council prior. To simulate the information gleaned by our
vehicle, we randomly sample a sequence of 50 real images,
consistent with the specified roadworks layout, to create a
single traversal. This process is repeated for 10 traversals. We
proceed in this manner to simulate 15 independent excursions.

During each traversal, the in-situ observations are added
to both the Gaussian process and the HMM-based model.
Figures 4 and 5 show the posterior of roadworks generated
by each model respectively for the same sample excursion
as the number of traversals increases. In an ideal case, the
probability of roadworks at any point would match the ground-
truth. These figures suggest that both algorithms become more
confident about the presence or absence of roadworks as the
number of traversals increases. Both successfully discount
the erroneous web-prior. We quantify this convergence using
the root-mean-square error (RMSE) between the roadworks
posterior and the binary-valued function indicating the true
presence of roadworks. Figure 6 shows how, on average, the
RMSE tends to decrease with increasing number of traversals.
Crucially, however, while the RMSE median at each traversal
is roughly commensurate for both approaches, the GP-based
model tends to exhibit a much reduced variance compared to
the HMM. This indicates that the GP-based model performs
well over the full range of scenarios presented, whereas
the HMM-based predictions can be substantially inferior. We
attribute this to the smoothness assumption inherent in our
GP which allow the system to learn a more flexible model as
well as the usual spatial extent of roadworks. Figure 7 shows
that the likelihood of the GP model substantially improves
with increasing traversal, whereas the HMM is hindered by
its poor performance on outliers.

B. Repeated Traversals

In addition to the synthesised excursions we repeatedly
traversed a real roadworks site around half a kilometre in
extent. The GP-based model output for these data is shown
in Figure 8. Note that in this real scenario observations may
not coincide spatially with previous readings and thus would
require a more involved continuous HMM formulation. Our
GP-based model, on the other hand, naturally accommodates
continuous space. We do not here explore a continuous HMM
formulation. As in the simulations, inspection of Figure 8
reveals that the peaks in the predictions become increasingly
correlated with the detailed structure of the ground-truth.
The effect here is less pronounced than in the simulations
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Fig. 6. Box plots of the RMSE error for the HMM and the GP roadwork
priors across the same 15 simulated excursions, each containing 10 traversals.
The plots are a non-parametric way of showing the sample minimum, 25th
percentile, median, 75th percentile, maximum and samples considered outliers
(plotted as triangles with right hand y-axis). Outliers are points that lie beyond
the boxplot fence and signify extreme values in the tails of the distribution.
On average, the RMSE is decreasing for both plots. The HMM plot has
significantly more outliers than the GP and a higher variance, which implies
that the GP performs better across the entire range of scenarios presented.
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Fig. 7. Negative log likelihoods for HMM, left, and GP, right, over the
simulated traversals. Note that while the different formats of data used by
the two models imply that their likelihoods are not directly comparable, the
plots do illustrate that the NLL of the GP exhibits a strong downward trend;
the GP is increasingly accurate with increasing traversal number.

due to an increased amount of contradictory information
(mis-classifications of roadworks indicators). This can be
attributed to environmental factors (e.g. lighting) remaining
constant during real traversals and thus potentially introducing
a systematic bias to results. This bias is not captured by our
simulator, which randomly samples real scenes from a variety
of traversals. However, even in this more challenging scenario
our GP-based model accurately maps the roadworks. Also
note that the inaccurate web-prior is successfully discounted.

VI. CONCLUSIONS AND FUTURE WORK

This work proposes two possible probabilistic models for a
roadwork prior – that is, a prior expressing for each position
along a vehicle’s trajectory the probability of encountering
roadworks. Our models are built using observations taken
both in-situ and obtained from dedicated web resources. We
consider both GP classification and an HMM-based formulation
for this prior. In the GP case, the roadwork prior is based on
a novel formulation of GP classification which accommodates
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Fig. 4. The roadwork prior estimated by the HMM is shown for every second traversal. Notice how this prior converges to the groundtruth with increasing
number of traversals. The erroneous city council prior is also successfully ignored from the 5th traversal onwards. We compare the exact same roadwork
configuration as in Fig. 5 Note that the plotted likelihoods are scaled by a multiplicative factor so that the sum of the likelihood of roadworks and the
likelihood of not-roadworks is equal to unity for every point; roughly speaking, the posterior should follow these scaled likelihoods.

Traversal 1

Distance along trajectory [%]

P
ro

b
ab

il
it

y

0 50 100

0

0.5

1

Traversal 3

Distance along trajectory [%]

P
ro

b
ab

il
it

y

0 50 100

0

0.5

1

Traversal 5

Distance along trajectory [%]

P
ro

b
ab

il
it

y

0 50 100

0

0.5

1

Traversal 7

Distance along trajectory [%]

P
ro

b
ab

il
it

y

0 50 100

0

0.5

1

Traversal 9

Distance along trajectory [%]

P
ro

b
ab

il
it

y

0 50 100

0

0.5

1

Fig. 5. The roadwork prior estimated by the GP is shown for every second traversal. Notice how this prior converges to the groundtruth with increasing
number of traversals. The erroneous first city council prior is also successfully ignored from the 3rd traversal onwards. Compared to the HMM implementation
(see Fig. 4), the GP roadwork prior is inherently smoother demonstrating realistic progressions from roadwork to non-roadwork states and vice versa. Note
that the plotted likelihoods are scaled similar to Fig. 4.
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Fig. 8. For our real excursions (600m long), the Oxfordshire county council
provided a single observation and our GP framework successfully recovered
the true roadwork layout. The sparsity of the groundtruth is due to the
nature of the roadwork scene: roadwork signs leading up to some barriers.
Furthermore, for real traversals, observations occur in continuous space and
are unlikely to exactly coincide (as in the case for simulations). In spite of
this, our system is able to accurately predict the underlying roadwork prior
for this real roadwork scene. For legend, see Fig. 5.

noisy observations in a continuous state space. For both
models, repeated updates are possible, allowing an agent to
refine its predictions over time. In particular, we demonstrate
that, while both approaches converge towards the ground-
truth with increasing traversals, only our proposed GP model
performs well across the entire range of scenarios presented.

There are several avenues for future, related work. Thus far,
we have considered functions of a univariate spatial x. More
interestingly, we could add in a second spatial dimension to
allow for inference over two dimensional road networks. A
temporal dimension for explicitly modelling the temporary
nature of roadworks would also permit dynamic inference.
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